A CR Poincaré inequality on the complex sphere

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetries Shared by the Poincaré Group and the Poincaré Sphere

Henri Poincaré formulated the mathematics of Lorentz transformations, known as the Poincaré group. He also formulated the Poincaré sphere for polarization optics. It is shown that these two mathematical instruments can be derived from the two-by-two representations of the Lorentz group. Wigner’s little groups for internal space-time symmetries are studied in detail. While the particle mass is a...

متن کامل

A Quantitative Isoperimetric Inequality on the Sphere

In this paper we prove a quantitative version of the isoperimetric inequality on the sphere with a constant independent of the volume of the set E.

متن کامل

A local optimal diastolic inequality on the two-sphere

Using a ramified cover of the two-sphere by the torus, we prove a local optimal inequality between the diastole and the area on the two-sphere near a singular metric. This singular metric, made of two equilateral triangles glued along their boundary , has been conjectured by E. Calabi to achieve the best ratio area over the square of the length of a shortest closed geodesic. Our diastolic inequ...

متن کامل

A Poincaré–type Inequality on the Euclidean Unit Sphere

We consider the second variation for the volume of convex bodies associated with the Lp Minkowski-Firey combination and obtain a Poincaré-type inequality on the Euclidean unit sphere Sn−1 . Mathematics subject classification (2010): 52A20.

متن کامل

Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere

We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for general spectrally defined operators on the space of CRpluriharmonic functions. We will then obtain the sharp Beckner-Onofri inequality for CR-pluriharmonic functions on the sphere, and, as a consequence, a sharp logarithmic Hardy-Littlewood-Sobolev inequali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2007

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2006.03.066